엔지니어 게시판
LeetCode 솔루션 분류

[5/23] 474. Ones and Zeroes

컨텐츠 정보

본문

[LeetCode 시즌 3] 2022년 5월 23일 문제입니다.

https://leetcode.com/problems/ones-and-zeroes/


474. Ones and Zeroes
Medium
3843383Add to ListShare

You are given an array of binary strings strs and two integers m and n.

Return the size of the largest subset of strs such that there are at most m 0's and n 1's in the subset.

A set x is a subset of a set y if all elements of x are also elements of y.

 

Example 1:

Input: strs = ["10","0001","111001","1","0"], m = 5, n = 3
Output: 4
Explanation: The largest subset with at most 5 0's and 3 1's is {"10", "0001", "1", "0"}, so the answer is 4.
Other valid but smaller subsets include {"0001", "1"} and {"10", "1", "0"}.
{"111001"} is an invalid subset because it contains 4 1's, greater than the maximum of 3.

Example 2:

Input: strs = ["10","0","1"], m = 1, n = 1
Output: 2
Explanation: The largest subset is {"0", "1"}, so the answer is 2.

 

Constraints:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] consists only of digits '0' and '1'.
  • 1 <= m, n <= 100

관련자료

댓글 1

mingki님의 댓글

  • 익명
  • 작성일
knapsack problem
https://en.wikipedia.org/wiki/Knapsack_problem

C++
Runtime: 411 ms, faster than 45.44% of C++ online submissions for Ones and Zeroes.
Memory Usage: 9.8 MB, less than 82.68% of C++ online submissions for Ones and Zeroes.
class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));
        
        for (auto &s : strs) {
            vector<int> count(2, 0);
            for (auto c : s) count[c - '0']++;
            for (int zero = m; zero >= count[0]; --zero) {
                for (int one = n; one >= count[1]; --one) {
                    dp[zero][one] = max(1 + dp[zero - count[0]][one - count[1]], dp[zero][one]);
                }
            }
        }
        return dp[m][n];
    }
};
전체 410 / 1 페이지
번호
제목
이름

최근글


인기글


새댓글


Stats


  • 현재 접속자 560 명
  • 오늘 방문자 5,731 명
  • 어제 방문자 9,517 명
  • 최대 방문자 14,831 명
  • 전체 회원수 1,599 명
알림 0